多态性分子标记(分子标记中的多态性条带是怎么定义的)

2023-12-04 15:30:02 :36

多态性分子标记(分子标记中的多态性条带是怎么定义的)

大家好,如果您还对多态性分子标记不太了解,没有关系,今天就由本站为大家分享多态性分子标记的知识,包括分子标记中的多态性条带是怎么定义的的问题都会给大家分析到,还望可以解决大家的问题,下面我们就开始吧!

本文目录

分子标记中的多态性条带是怎么定义的

看你的样本数量了,如果每个样本在同一个位点都有相同的条带,那么这条带就不是多态性条带。如果有的样本有,有的样本没有条带,那么这条带就是多态条带了。***隐藏网址***

哪一类分子标记具有最丰富的多态性

AFLPAFLP可分析基因组较大的作物,其多态性很强,利用放射性标记或银染法在变性的聚丙烯酰胺凝胶上可检测到 100~150个扩增产物,因而非常适合绘制品种的指纹图谱及进行分类研究。因此,AFLP技术虽产生不久却倍受青睐,已应用于水稻、大豆、大麦、马铃薯和白菜等多种作物上。研究表明,AFLP产生的多态性远远超过 RFLP和RAPD等技术,因而被认为是指纹图谱技术中多态性最丰富的一项技术。但该技术已申请专利,在生产及商业上的应用受到一定的限制。

分子标记方法

分子标记在农业基础与应用研究领域,分子标记技术已开始应用于作物种质资源和育种的研究,特别是在构建分子遗传图谱和标记目的性状基因方面取得了很大的进展。 形态标记(morphologica markers)即植物的外部特征特性,如株高、穗长、粒色、千粒重等。此种形态标记简单直观,但是形态标记数少、多态性差、易受环境条件影响。在小麦抗叶锈病基因标记方面,SINGH曾利用形态标记发现慢叶锈基因Lr34和小麦叶片尖部坏死基因紧密连锁。 细胞标记(cytological markers)主要是染色体核型(染色体鼠数目、大小、随体、着丝点位置等)和带型(C带、N带、G带等),这类标记的缺点是数目有限。目前,还未发现用其进行小麦抗叶锈基因的标记。 生化标记(biochemical markers)主要包括同工酶和储藏蛋白。生化标记具有经济方便的优点,但其标记数有限。DAVlD等利用含Lr19的小麦抗叶锈病近等基因系,发现生化标记内肽酶同工酶EP-Dl的无效等位基因EP-Dlc可以作为与 Lr19紧密连锁的生化标记,遗传距离为(0.33士0.33)cM。 分子标记与形态标记、细胞标记、生化标记相比较,有以下几方面的优点:①在植物体的多个组织及生育阶段均可检测到,不受时空限制。②数量多,遍及整个基因组。③有许多标记表现为共显性,能够鉴别基因型纯合与否,提供完整的基因型。在标记小麦抗叶锈病基因方面,分子标记可以在更深层次上揭示小麦抗锈遗传机制。通过找到与抗锈基因紧密连锁的分子标记,不但能在遗传背景不同的育种材料中特异性的检测目的基因,而且可以在任一生育阶段同时对多个抗性基因进行筛选,这为了解抗源和抗病品种中所含有的抗性基因提供了更为迅速、稳定、可靠的方法。 目前,用于标记小麦抗叶锈病基因的分子标记主要有以下几种: 2.l RFLP技术在小麦抗叶锈病基因标记中的应用 RFLP(restriction fragment length polymorphism)作为遗传分析的工具开始于1974年,80年代开始应用于植物。其基本原理是物种的基因组DNA在限制性内切酶的作用下,产生相当多的、大小不等的DNA片段,用放射性同位素标记的DNA做探针把与被标记DNA相关的片段检测出来,从而构建出多态性图谱;它所代表的是基因组 DNA在限制性内切酶消化后产生的片段在长度上的差异。RFLP技术被广泛应用于小麦遗传图谱的构建标记和定位小麦的目的基因。 在小麦抗叶锈病基因的RFLP标记方面,SCHACHERMAYR等 利用小麦抗叶锈病近等基因系Lr1/6*Thatcher和Thatcher及感病品种Frisal,通过F2群体分离,将37个RFLP中的16个定位在了第五部分同源群,而且能在Lr1/6*Thatcher和Frisal之间揭示多态性,I1个RFLP探针能在近等基因系间揭示多态性,F2群体分离分析发现,其中3个与抗性基因连锁,其中一定位在染色体5D上的探针pTAG621证明与Lr1紧密连锁,并将这一RFLP标记转化为了更为可靠的STS 标记。 AUTRIQUE等利用4种含不同抗性基因的小麦近等基因系,根据抗性基因在其染色体上所处的位置选择克隆,同时,从大麦的RFLP连锁图谱和D一基因组RFLP图谱中,挑选了其它的克隆。通过杂交的方法来寻找多态性分子标记。结果发现,定位在染色体7DL和3DL上的8个分子标记,与抗性基因Lr19和Lr24共分离;来自Aegilops umbellulata的Lr9,被定位在染色体6B上,一克隆XksuD27与Lr9共分离,以及与Lr32紧密连锁的两个RFLP标记,遗传距离分别为(3.3土2.6)cM和(6.9土3.6)cM。 2.2 小麦抗叶锈病基因的RAPD标记 NAIK等从395个随机引物中筛选出了3个与小麦抗叶锈病基因Lr9连锁的RAPD标记,将其特异性产物克隆、测序,然后转化成更为稳定的STS标记,F2、F3分离群体检测发现,所有的3个RAPD标记0PA-07、0PJ-l3、OPR-15和一RFLP标记 cMWG684与Lr9紧密连锁。另一RFLP标记PSR546也与Lr9紧密连锁,并与上述四个 DNA标记紧密连锁,遗传距离为(8士2.4)cM,此标记被定位在小麦染色体长臂6BL上。DEDRYVER等利用含Lr24的小麦抗叶锈病近等基因系,在125个随机引物中,只有引物OP-H5能在抗病亲本RL6064中扩 增出一700bp的特异性的条带,而在感病亲本Thatcher中没有。F2群体分离证明,该标记与Lr24完全连锁。将其转变成稳定、可靠的SCAR标记,为分子标记辅助育种提供了有力的工具。3 其它分子标记 虽然RFLP和RAPD是两种比较普遍的分子标记,但RFLP在小麦中检测的多态性较低,仅为20%--38%。RAPD是方便经济的分子标记,但是重复性和稳定性较差。其它的分子标记,如SSR、ISSR和AFLP的综合信息量大,在作物特别是小麦遗传资源的研究上有着广阔的应用前景。4 分子标记辅助选择 目前,分子标记技术已开始应用于育种实践,并表现出其独特的优越性。寻找与重要的农艺性状紧密连锁的分子标记,是进行分子标记辅助选择(又称分子育种)和通过作图克隆基因的基础。分子标记辅助选择(Molecular-assisted-selection简称MAS)是生物技术与传统遗传育种相结合而形成的,它可以减少传统的回交育种过程中很难消除的连锁累赘,还可以把不同抗叶锈病基因聚合到同一优良品种中,实现同效基因的累加作用,获得持久抗性。在获得稳定的分子标记的基础上,通过染色体步行(Chromosome walking)等方法分离克隆该基因。 由于分子标记育种技术目前尚不成熟和完善,因此还不能作为一种育种方法单独使用。我国传统育种经验丰富,因此,应注意将分子标记这一先进技术与育种家的丰富经验相结合,使分子标记辅助选择发挥其更大的作用。

SNP分子标记

单核苷酸多态性(single nucleotide polymorphism,SNP),主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。它是人类可遗传的变异中最常见的一种。占所有已知多态性的90%以上。SNP在人类基因组中广泛存在,平均每500~1000个碱基对中就有1个,估计其总数可达300万个甚至更多。 SNP所表现的多态性只涉及到单个碱基的变异,这种变异可由单个碱基的转换(transition)或颠换(transversion)所引起,也可由碱基的插入或缺失所致。但通常所说的SNP并不包括后两种情况。 理论上讲,SNP既可能是二等位多态性,也可能是3个或4个等位多态性,但实际上,后两者非常少见,几乎可以忽略。因此,通常所说的SNP都是二等位多态性的。这种变异可能是转换(C T,在其互补链上则为G A),也可能是颠换(C A,G T,C G,A T)。转换的发生率总是明显高于其它几种变异,具有转换型变异的SNP约占2/3,其它几种变异的发生几率相似。Wang等的研究也证明了这一点。转换的几率之所以高,可能是因为CpG二核苷酸上的胞嘧啶残基是人类基因组中最易发生突变的位点,其中大多数是甲基化的,可自发地脱去氨基而形成胸腺嘧啶。 在基因组DNA中,任何碱基均有可能发生变异,因此SNP既有可能在基因序列内,也有可能在基因以外的非编码序列上。总的来说,位于编码区内的SNP(coding SNP,cSNP)比较少,因为在外显子内,其变异率仅及周围序列的1/5。但它在遗传性疾病研究中却具有重要意义,因此cSNP的研究更受关注。 从对生物的遗传性状的影响上来看,cSNP又可分为2种:一种是同义cSNP(synonymous cSNP),即SNP所致的编码序列的改变并不影响其所翻译的蛋白质的氨基酸序列,突变碱基与未突变碱基的含义相同;另一种是非同义cSNP(non-synonymous cSNP),指碱基序列的改变可使以其为蓝本翻译的蛋白质序列发生改变,从而影响了蛋白质的功能。这种改变常是导致生物性状改变的直接原因。cSNP中约有一半为非同义cSNP。 先形成的SNP在人群中常有更高的频率,后形成的SNP所占的比率较低。各地各民族人群中特定SNP并非一定都存在,其所占比率也不尽相同,但大约有85%应是共通的。 SNP自身的特性决定了它更适合于对复杂性状与疾病的遗传解剖以及基于群体的基因识别等方面的研究:1、 SNP数量多,分布广泛。据估计,人类基因组中每1000个核苷酸就有一个SNP,人类30亿碱基中共有300万以上的SNPs。SNP 遍布于整个人类基因组中,根据SNP在基因中的位置,可分为基因编码区SNPs(Coding-region SNPs,cSNPs)、基因周边SNPs(Perigenic SNPs,pSNPs)以及基因间SNPs(Intergenic SNPs,iSNPs)等三类。2、 SNP适于快速、规模化筛查。组成DNA的碱基虽然有4种,但SNP一般只有两种碱基组成,所以它是一种二态的标记,即二等位基因(biallelic)。 由于SNP的二态性,非此即彼,在基因组筛选中SNPs往往只需+/-的分析,而不用分析片段的长度,这就利于发展自动化技术筛选或检测SNPs。3、 SNP等位基因频率的容易估计。采用混和样本估算等位基因的频率是种高效快速的策略。该策略的原理是:首先选择参考样本制作标准曲线,然后将待测的混和样本与标准曲线进行比较,根据所得信号的比例确定混和样本中各种等位基因的频率。4、 易于基因分型。SNPs 的二态性,也有利于对其进行基因分型。对SNP进行基因分型包括三方面的内容:(1)鉴别基因型所采用的化学反应,常用的技术手段包括:DNA分子杂交、引物延伸、等位基因特异的寡核苷酸连接反应、侧翼探针切割反应以及基于这些方法的变通技术;(2)完成这些化学反应所采用的模式,包括液相反应、固相支持物上进行的反应以及二者皆有的反应。(3)化学反应结束后,需要应用生物技术系统检测反应结果。

分子标记有什么用做分子标记的目的是什么还有做分子标记要用到哪些东西

分子标记 (Molecular Markers) 是以个体间遗传物质内核苷酸序列变异为基础的遗传标记,是DNA水平遗传多态性的直接的反映。与其他几种遗传标记——形态学标记、生物化学标记、细胞学标记相比,DNA分子标记具有的优越性有:大多数分子标记为共显性,对隐性的性状的选择十分便利;基因组变异极其丰富,分子标记的数量几乎是无限的;在生物发育的不同阶段,不同组织的DNA都可用于标记分析;分子标记揭示来自DNA的变异;表现为中性,不影响目标性状的表达,与不良性状无连锁;检测手段简单、迅速。随着分子生物学技术的发展,现在DNA分子标记技术已有数十种,广泛应用于遗传育种、基因组作图、基因定位、物种亲缘关系鉴别、基因库构建、基因克隆等方面。

snp标记怎样判断有具备多态性

SNP是分布在动物基因组中非常常见的一种分子标记。在人体中每1000bp就可能有一个SNP。需找SNP的目的是为了做连锁分析,在现在先进的技术里,还可以做全基因组关联分析(GWAS)。然后说说标签SNP,这个涉及到单倍型的问题(对单倍型稍微讲解一下!三个SNP假定是G、C突变,G、T突变和A、T突变,但不是说这些突变在单倍体染色体上里是随意组合的,而是趋向于一种组合方式,比如一条染色体是GGT,另一条是CCA)。因为在基因组中,有些区域是较为紧密连锁在一起的,这个区域可大可小,组成一个单倍型框,在区域里也会存在多多少少的SNP。人们没有必要把这些SNP都找出来,因为它们往往就像是捆绑在一起的。于是从中选出一个代表性的SNP,它可以反映这个区域的情况。然后就方便人们继续做关联分析!继人类基因组计划之后,还做了单倍型的图谱。这也是标签SNP的应用。讲的够清楚吧,呵呵……希望理解,谢谢。

多态遗传标记 意思(polymorphic genetic marker)

是指一个标记在群体中存在着多样性(即多态),这样在分析群体时才能有用。例如在基因克隆的定位群体中,一个分子标记必须在F2群体中有多态性,在F2种有分离,才能用来做定位标记。

OK,关于多态性分子标记和分子标记中的多态性条带是怎么定义的的内容到此结束了,希望对大家有所帮助。

多态性分子标记(分子标记中的多态性条带是怎么定义的)

本文编辑:admin
Copyright © 2022 All Rights Reserved 威海上格软件有限公司 版权所有

鲁ICP备20007704号

Thanks for visiting my site.